- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Acta Cryst. (1989). C45, 1093-1095

FRENZ, B. A. (1985). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.

- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*78. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.

Structure of 8-Amino-3- β -D-ribofuranosyl-1,2,4-triazolo[4,3-b]pyridazine, an Analog of Formycin A

BY STEVEN B. LARSON,* YONGHAN KANG, GANAPATHI R. REVANKAR AND ROLAND K. ROBINS

Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, CA 92626, USA

(Received 2 November 1988; accepted 22 December 1988)

Abstract. $C_{10}H_{13}N_5O_4$, $M_r = 267.25$, orthorhombic, a = 6.7976 (5), b = 7.4170 (8), c =*P*2₁2₁2₁, 22.1104 (17) Å, V = 1114.75 (16) Å³, Z = 4, $D_r =$ 1.592 g cm^{-3} , Cu Ka $(\lambda = 1.54178 \text{ Å}),$ $\mu =$ 10.236 cm^{-1} , F(000) = 560, T = 295 K, R = 0.0273for 2217 reflections ($F \ge 4\sigma_F$). The sugar conformation and puckering parameters are ${}_{1}^{2}T$ (C_{1'}-exo-C_{2'}-endo), $P = 141 \cdot 2^{\circ}$ and $\tau_m = 42 \cdot 4^{\circ}$. The side chain is gt, $\varphi_{OO} = 57.70 \ (14)^{\circ}$ and $\varphi_{CO} = 176.06 \ (11)^{\circ}$. The glycosidic bond length is 1.491 (2) Å; the glycosidic torsion angle, O4'-C1'-C3-N2, is 71.3 (2)° corresponding to an anti conformation. The triazolopyridazine moiety is planar [r.m.s. deviation: 0.005(2)Å]. The dihedral angle between the pyridazine and triazole planes is 0.51 (5)°. Bond [C-C,1.506(2) - 1.541(2)Å; lengths C--0, 1.406 (2)-1.453 (2) Å] and angles in the ribose moiety are normal; those in the aglycon are consistent with a non-aromatic system containing four double bonds [three C=N, 1.313(2)-1.320(2) Å, and one C=C 1.375(2) Å]. The three hydroxyl H atoms and one H atom of the amino group are involved in the intermolecular hydrogen bonding $[1.78 (3) \text{ Å} \leq d(\text{H} \cdots \text{A})]$ ≤ 2.17 (3) Å; 159 (2)° $\leq \angle (D-H\cdots A) \leq 168$ (3)°].

Experimental. Synthesis of the title compound (1) has been reported recently (Kang, Larson, Robins & Revankar, 1989). The sample crystal was a colorless, transparent, flattened prism grown slowly from water. Table 1 summarizes data collection and refinement. All non-H atom positions were obtained with *SHELXS*86 (Sheldrick, 1986). All H atoms were located in a difference map as peaks of density $0.54-0.84 \text{ e} \text{ Å}^{-3}$ at R = 0.056. Positional parameters

0108-2701/89/071093-03\$03.00

of all atoms, anisotropic thermal parameters for non-H atoms and isotropic thermal parameters for H atoms were refined with SHELX76 (Sheldrick, 1976). Scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974) except those of H which were taken from Stewart, Davidson & Simpson (1965). Data were reduced with SDP-Plus (Frenz, 1985); least-squaresplanes program from Cordes (1983); figures were drawn with ORTEPII (Johnson, 1976). The atomic coordinates are listed in Table 2; bond lengths, bond angles and selected torsion angles are listed in Table 3.[†] The atom labeling and molecular conformation are shown in Fig. 1. The hydrogen bonding is tabulated in Table 4 and illustrated in a packing diagram in Fig. 2.

[†]Tables of anisotropic thermal parameters, bond lengths and angles involving H atoms, torsion angles, least-squares planes and structure factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51694 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

© 1989 International Union of Crystallography

^{*} To whom correspondence should be addressed.

Table 1. Crystallographic summary for (1)

(A) Data collection $(295 \text{ K})^{a,b}$		1	2	3	1-2	1-2-3
Mode	$\omega - 2\theta$ scan	N2	N1	69	1.3805 (15)	106.26 (10)
Scan range (°)	$0.80 + 0.15 \tan\theta$	C3	N2	NI	1.315(2)	108.97 (10)
Background	Scan 0.25 times scan range before	N4	C3	C1'	1.361(2)	124-83 (11)
241061100	and after scan	N4	C3	N2	(-/	109.10 (10)
Scan rate ($^{\circ}$ min ⁻¹)	1.5-16.5	C1′	C3	N2	1.491 (2)	125·98 (11)
Exposure time (b)	A6 7	N5	N4	C9	1.3726 (14)	127.47 (10)
Exposure une (ii)	40.7	N5	N4	C3		127.00 (10)
Stability correction range on I	0.999-1.000	C9	N4	C3	1-374 (2)	105-53 (10)
20 range (°)	3-0-152-0	C6	N5	N4	1-313 (2)	111-62 (11)
Range in <i>hkl</i> , min.	0, -9, -27	C7	C6	N5	1.408 (2)	126-85 (12)
max.	8, 9, 27	C8	C7	C6	1.375 (2)	121.00 (12)
Total reflections, measd, unique	5026, 2327	C9	C8	N10	1.440 (2)	119-72 (11)
R _{int}	0.0171	C9	C8	C7		114-33 (12)
Crystal dimensions (mm)	$0.24 \times 0.23 \times 0.11$	N10	C8	C7	1.340 (2)	125-95 (12)
Crystal volume (mm ³)	0.00574	NI	C9	N4	1.320 (2)	110.14 (10)
Crystal faces	$\{001\}, \{011\}, (102), (10\overline{2}), (10$	NI	C9	C8		131-15 (11)
orystal laces	(102), (102),	IN4 C2/	C9		1 606 (0)	118-72(11)
Transmission factor range	0.748 0.000	C2'		C2	1.526 (2)	$103 \cdot 12(9)$
Transmission-ractor range	0.746-0.900	04/		C3	1 429 (2)	113.93 (10)
(R) Structure refinement ^c		C3'	C27	027	1,523 (2)	105.47(10)
(D) of actine remember $(E > A_{C})$	2217	C3'	C2'	C1'	1.333 (2)	101.70 (10)
Non-equivalence of $(F \ge 4\sigma_F)$	2217	02'	Č2'	CI'	1.406 (2)	111.90 (10)
No. of variables, n	225	C4′	C3'	03'	1.541(2)	114.15(10)
Extinction parameter	$8.2(16) \times 10^{-7}$	C4'	C3'	C2'		101.97 (10)
Goodness of fit, S	1.544	O3'	C3′	C2'	1.410 (2)	113.33 (10)
R, wR	0.0273, 0.0396	C5′	C4′	04'	1.506 (2)	109.47 (10)
R for all data	0.0293	'C5'	C4′	C3'		111-21 (10)
Max, ave. Δ/σ	0.0038, 0.0006	O4'	C4′	C3'	1-453 (2)	107-27 (10)
Max., min. density in ΔF map (e Å ⁻³)	0.38, -0.21	O5'	C5'	C4'	1-424 (2)	110-17 (11)
,	,	C1′	O4′	C4′		107-56 (9)
(a) Unit-cell parameters were obtained by least-squares refinement of the setting angles of 25 reflections with $57.2^{\circ} < 2\theta < 59.1^{\circ}$		Selected torsion angles (°)				
		Ŷ	N2	C3 C1'	04'	71.3(2)

 $\begin{array}{c} \lambda \\ \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{array}$

 $\varphi_{\rm CO}$

C1 C2

C3

C4′

O4′

04′

C3'

C2 C3

C4

04

Cl

C4′

C4

04

СI

C5'

C5

(b) Enraf-Nonius CAD-4 diffractometer with a graphite monochromator was used. Data reduction was accomplished with the SDP-Plus software (Frenz, 1985). Crystal and instrument stability were monitored by re-measurement of 3 check reflections (2,1,12; $\overline{1},\overline{3},\overline{10}; \overline{242}$) every hour. A linear fit of the intensities of these reflections was used to correct the data. (c) Function minimized was $\sum w(F_o - F_o)^2$, where $w^{-1} = (\sigma_F^2 + 0.0004F^2)$. $\sigma_F = F\sigma_I/2I$; $\sigma_I = [N_{pk} + N_{bg1} + N_{bg2}]^{1/2}$.

Table 2. Positional and isotropic thermal parameters for atoms in (1)

	x	у	Z	$U_{eq}^{*}/U(\dot{A}^2)$
N1	0.7650 (2)	0.84696 (13)	0.58591 (5)	0.0329 (3)
N2	0.7706 (2)	0.70709 (15)	0.62707 (5)	0.0327 (3)
C3	0.7739 (2)	0.5533 (2)	0.59754 (5)	0.0282 (3)
N4	0.7700 (2)	0-58723 (14)	0-53704 (4)	0.0273 (3)
N5	0.7697 (2)	0.4626 (2)	0-49115 (5)	0.0351 (3)
C6	0.7655 (2)	0.5403 (2)	0.43782 (6)	0.0392 (4)
C7	0.7605 (2)	0.7267 (2)	0-42591 (6)	0.0384 (4)
C8	0.7623 (2)	0.8503 (2)	0.47225 (6)	0.0324 (3)
C9	0.7653 (2)	0.7718 (2)	0.53179 (5)	0.0281 (3)
N10	0.7613 (2)	1.0300 (2)	0-46606 (6)	0.0446 (4)
C1′	0.7912 (2)	0.3705 (2)	0.62509 (5)	0.0283 (3)
C2'	0.9445 (2)	0.3583 (2)	0-67531 (6)	0.0286 (3)
C3'	0.8821 (2)	0.1849 (2)	0.70788 (5)	0.0279 (3)
C4'	0.6568 (2)	0.1887 (2)	0.70011(5)	0.0287 (3)
C5'	0.5556 (2)	0.2339 (2)	0.75878 (6)	0.0331 (4)
02'	1.1373 (2)	0.3587 (2)	0.65228 (5)	0.0460 (3)
O3'	0.9729 (2)	0.02870 (14)	0.68458 (6)	0.0413 (3)
O4'	0.61202 (14)	0-3264 (2)	0.65542 (4)	0.0364 (3)
O5'	0-3489 (2)	0.2487 (2)	0.74958 (4)	0.0414 (3)
H6	0-778 (3)	0-465 (3)	0.4068 (9)	0.045 (5)
H7	0.754 (3)	0.769 (3)	0-3846 (10)	0.058 (5)
H10A	0.748 (3)	1.085 (3)	0.4285 (8)	0.048 (5)
H10B	0.765 (4)	1.096 (3)	0-5048 (11)	0.063 (6)
H1′	0.818 (2)	0-285 (2)	0.5927 (7)	0.030 (4)
H2'	0.919 (2)	0-457 (2)	0.7029 (7)	0.030 (4)
H3'	0.915 (3)	0.190 (3)	0.7509 (9)	0.039 (5)
H4'	0.618 (3)	0.071 (2)	0.6851 (8)	0.033 (4)
H5'A	0.615 (4)	0.351 (3)	0.7804 (10)	0.066 (6)
H5'B	0.576 (3)	0.129 (3)	0.7848 (8)	0.043 (5)
HO2'	1.225 (4)	0.315 (4)	0.6824 (12)	0.079 (8)
HO3'	0.915 (5)	0.000 (4)	0.6555 (12)	0.090 (10)
HO5'	0.276 (5)	0.246 (5)	0.7901 (13)	0.095 (9)

^{*} For non-hydrogen atoms, $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* A_{ij}$, where A_{ij} is the dot product of the ith and ith direct-space unit-cell vectors.

Table 4. Hydrogen bonding in (1)

C4' O4'

C1'

C2'

C3'

05'

O5'

33-04 (11)

43.25 (12)

57·70 (14)

176-06 (11)

(12)14.82

12.51 (12)

36.29 (12)

		Symmetry of A	$d(D \cdots A)$	$d(\mathbf{H}\cdots \mathbf{A})$	$\angle (D-\mathbf{H}\cdots A)$
D-	–H··· <i>A</i>	relative to D	(Å)	(Å)	(°)
N10	H10A O2'	x = 0.5, 1.5 = y, 1.0 = z	2.871 (2)	1.98 (2)	159. (2)
O2′	HO2' O5'	1.0 + x, y, z	2.714 (2)	1.78 (3)	168- (3)
O3′	HO3' N1	x, y = 1.0, z	2.929 (2)	2.17 (3)	164. (3)
05′	HO5' N2	1.0-x, y=0.5, 1.5-z	2.863 (1)	1-88 (3)	159- (3)

Fig. 1. Perspective drawing of (1) showing labeling of non-hydrogen atoms. Double bonds in the heterocyclic ring are N2=C3, N5=C6, N1=C9 and C7=C8. Hydrogens are included as open circles. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Unit-cell packing diagrams with hydrogen bonds indicated by thin lines. There are no interbase hydrogen bonds. Hydrogens attached to carbon atoms have been omitted for clarity. (a) Projection along the b axis illustrating the base stacking along the twofold screw axis parallel to the a axis. The bases are essentially perpendicular to the a axis and stacked about $3 \cdot 4$ Å apart. (b) Projection along the a axis showing the flip-flop overlap of bases in the stacks and the alignment of the amino bond with the N4-C9 bond.

Related literature. The title compound is related to formycin A first isolated by Hori, Ito, Takita, Koyama, Takeuchi & Umezawa (1964). Structures of formycin and derivatives include formycin monohydrate (Prusiner, Brennan & Sundaralingam, 1973), 2-methyl-formycin (Abola, Sims, Abraham, Lewis & Townsend, 1974) and formycin 5'-phosphate (Giranda, Berman & Schramm, 1988). Comparison of (1) with the structure of the unsubstituted 1,2,4-triazolo[4,3-b]pyridazine

reported by Golic, Leban, Stanovnik & Tisler (1978) indicates a slight bond elongation occurring at bonds involving the substitution sites, C3 and C8. The conformational parameters follow the convention of Altona & Sundaralingam (1972). The title compound was found to lack significant biological activity (Kang, Larson, Robins & Revankar, 1989).

References

- Abola, J. E., Sims, M. J., Abraham, D. J., Lewis, A. F. & Townsend, L. B. (1974). J. Med. Chem. 17, 62–65.
- Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212.
- CORDES, A. W. (1983). Personal communication.
- FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- GIRANDA, V. L., BERMAN, H. M. & SCHRAMM, V. L. (1988). Biochemistry, 27, 5813-5818.
- GOLIC, L., LEBAN, I., STANOVNIK, B. & TISLER, M. (1978). Acta Cryst. B34, 1136-1140.
- HORI, M., ITO, E., TAKITA, T., KOYAMA, G., TAKEUCHI, T. & UMEZAWA, H. (1964). J. Antibiot. Ser. A, 17, 96–99.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138, third revision. Oak Ridge National Laboratory, Tennessee, USA.
- KANG, Y., LARSON, S. B., ROBINS, R. K. & REVANKAR, G. R. (1989). J. Med. Chem. In the press.
- PRUSINER, P., BRENNAN, T. & SUNDARALINGAM, M. (1973). Biochemistry, 12, 1196–1202.
- SHELDRICK, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. A program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1989). C45, 1095–1097

1-Phenyl-N²-(1-phenylmethyl-3-isoquinolyl)acetamidinium Trifluoromethanesulfonate

BY R. G. PRITCHARD, B. BEAGLEY, B. L. BOOTH AND M. TILLEY

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

(Received 7 November 1988; accepted 3 January 1989)

Abstract. $C_{24}H_{22}N_3^+.CF_3O_3S^-$, $M_r = 501.5$, monoclinic, $P2_1/c$, a = 7.022 (1), b = 18.294 (3), c = 18.617 (4) Å, $\beta = 91.33$ (2)°, V = 2390.9 Å³, Z = 4, $D_x = 1.392$ Mg m⁻³, F(000) = 1040, $\lambda(Mo K\alpha) = 0.71069$ Å, $\mu = 0.148$ mm⁻¹, T = 293 K, R = 0.041for 2260 unique reflexions $[F \ge 3\sigma(F)]$. Coplanar acetamidinium and isoquinoline moieties [C-C-N-C] = -179.3 (1)°] are able to interact through their π systems. The protonated =NH group takes part in two hydrogen bonds: one is a weak intramolecular interaction with the isoquinoline nitrogen [=NH···N = 1.98 (3), N···N = 2.658 (5) Å, N-H···N = 135 (2)°] and the other is to an oxygen O(33) of the anion [=NH···O(33) = 2.02 (3) Å, N···O(33) = 2.886 (5) Å, N-H···O(33) = 171 (2)°]. The second acetamidinium nitrogen also forms an H bond to

0108-2701/89/071095-03\$03.00

© 1989 International Union of Crystallography